Predictors of Airbnb Prices in New York City

Jonathan Chow, Vamsi Ravilla, Jessica Rawls, & Sarah Nastasi
4/25/2022
Background

• Online marketplace where people can list their apartments, homes, condos, and vacation properties for rentals

• Used by travelers for a variety of reasons
 • Potential for less expensive stays than a hotel
 • Can provide a family stay in a larger space
 • Can provide a unique experience more immersive in the destination’s culture
Motivation

• Identify and quantify factors that influence Airbnb prices
• Help vacationers determine what Airbnb would best fit their budget
• Help interested listers determine the best price to list their property
Kaggle provided the data set

~50,000 datapoints for Airbnb listings in New York City, New York, in 2019

16 variables in the raw data set

- ID
- Name
- Host ID
- Host Name
- Neighborhood Group
- Neighborhood
- Latitude
- Longitude
- Room Type
- Price
- Minimum Night Stay
- Number of reviews
- Date of last review
- Reviews per month
- Number of host listings
- Yearly availability
Feature Engineering

- Desire to capture locality factors not provided in the raw data set
- Geographic variables were able to be extracted using the longitude & latitude of Airbnb listings

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access to Transportation System</td>
<td>Number of subway stations within 0.25 miles</td>
</tr>
<tr>
<td>Proximity to tourist attractions</td>
<td>Number of top 10 tourist attractions within 1 mile</td>
</tr>
<tr>
<td>Manhattan 1-mile buffer</td>
<td>0 or 1 for whether listing is within 1-mile buffer</td>
</tr>
</tbody>
</table>

Table 1. Feature Engineered Variables
Figure 1. Calculation of Airbnb Subway Access
Model Iteration 1 – Raw data

Call:
`lm(formula = price ~ Flat + Sharing + Staten + Brooklyn + Queens + Bronx + n_reviews + min_nights + revs_pm + availability + host_list_count, data = dataUncat)`

- Non-constant variance
- Non-normal behaviour
- Poor fit for the data
 - $R^2 = 0.2243$
 - $adj-R^2 = 0.2239$

Log transform of price
Add more variables
Model Iteration 2 – Stepwise BIC

Call:
```
lm(formula = log(price) ~ Flat + subway + Queens + Brooklyn + Bronx + NYC + availability + Sharing + Staten + n_reviews, data = trainData)
```

- Predictive performance
 - $R^2 = 0.5623$, Adj. $R^2 = 0.562$
- Slight linear increase in variance
- Non-normality at right tails

Box-Cox transform
Model Iteration 3 – Box-cox BIC model

Call:
`lm(formula = log(price)^(-0.25) ~ Flat + subway + Sharing + Queens + Brooklyn + Bronx + NYC + availability + Staten + n_reviews, data = trainData)`

- Predictive performance
 - $R^2 = 0.579$, Adj. $R^2 = 0.5787$
- Constant variance of residuals
- Improved normality – but heavy right tail persists
Non-normality at high prices

- Improvement across 3 models
- Significant non-normality exists
 - Current features/variables are locality focused
 - What about property features?
 - Dataset does not provide any property specific information
 - Ex. Rooms, area, facilities
- Explore high price property attributes
Word cloud of high-end properties

- High-cost features such as rooftop, luxury, penthouse, backyard, 3/4 BR not captured by dataset
- Many properties over $1000 per night are commercial spaces
Model 4 – Non luxury stepwise BIC

Call:
`lm(formula = log(price) ~ Flat + subway + Sharing + Queens + Brooklyn + Bronx + NYC + Staten + availability, data = trainData)`

Residuals:

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>1Q</th>
<th>Median</th>
<th>3Q</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-1.63261</td>
<td>-0.24828</td>
<td>-0.01506</td>
<td>0.22842</td>
<td>1.82213</td>
</tr>
</tbody>
</table>

Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|---------------------|-----------|------------|---------|---------|
| (Intercept) | 4.384e+00 | 7.923e-03 | 553.41 | <2e-16 *** |
| Flat | 7.097e-01 | 5.941e-03 | 119.47 | <2e-16 *** |
| subway | 1.018e-02 | 5.378e-04 | 18.92 | <2e-16 *** |
| Sharing | -4.377e-01| 1.824e-02 | -24.00 | <2e-16 *** |
| Queens | -4.085e-01| 9.605e-03 | -42.53 | <2e-16 *** |
| Brooklyn | -2.921e-01| 7.319e-03 | -39.91 | <2e-16 *** |
| Bronx | -5.945e-01| 1.739e-02 | -34.19 | <2e-16 *** |
| NYC | 2.356e-01 | 9.661e-03 | 24.39 | <2e-16 *** |
| Staten | -4.892e-01| 2.641e-02 | -18.52 | <2e-16 *** |
| availability | 4.387e-04 | 2.397e-05 | 18.30 | <2e-16 *** |

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.3741 on 16666 degrees of freedom
Multiple R-squared: 0.5816, Adjusted R-squared: 0.5814
F-statistic: 2574 on 9 and 16666 DF, p-value: < 2.2e-16

- Around 4.5% of the top properties removed
 - Price > $350
- Bottom 0.5% properties also removed
 - Price < $25
- All variables are significant
- VIF < 5 for all variables
- Improved prediction
Model 4 – Residual analysis

- Residuals mean around zero - Linearity holds good
- All residuals are bounded within a horizontal band – Constant variance
- Normal behaviour – only slight deviations at tails
- Good predictive power – $R^2 = 0.58$
Model Iterations Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>Adj. R-squared (Test data)</th>
<th>Number of Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw / Only Kaggle data</td>
<td>0.21</td>
<td>11</td>
</tr>
<tr>
<td>BIC stepwise with feature engineering</td>
<td>0.56</td>
<td>10</td>
</tr>
<tr>
<td>Box-Cox transformation</td>
<td>0.57</td>
<td>10</td>
</tr>
<tr>
<td>Random Forest</td>
<td>0.62 (train)</td>
<td>28</td>
</tr>
<tr>
<td>Non-Luxury listings</td>
<td>0.58</td>
<td>9</td>
</tr>
</tbody>
</table>

Model 4 is the final model:
- All coefficients are significant
- No multicollinearity
 - VIF < 5 for all input variables
- Cook’s distance << 1 for all points
 - Around 1% points are greater than 4/N
 - Possibly due to lack of property specific variables in the data

\[
\log(price) \sim Flat + subway + Sharing + Queens + Brooklyn + Bronx + NYC + Staten + availability
\]
Conclusions

• Locality plays a significant role
 • Neighbourhood
 • Accessibility
 • Proximity to Manhattan

• Property specific attributes play significant role

• Surprisingly, tourist information plays
Future Research

• Examine how variables change across different cities
• Analyze how higher-income and luxury Airbnbs behave differently than averaged priced listings
Thank you

Questions?

Jonathan Chow, Chakri Ravilla, Jessica Rawls, & Sarah Nastasi

4/25/2022