Video link: https://youtu.be/OIA0VxDsQ\_A



**Automated Essay Scoring** 

Junaid Syed, Sai Shanbhag, Vamsi Ravilla

# Video link: https://youtu.be/OIA0VxDsQ\_A





#### Introduction

#### Motivation:

- Writing is a foundational skill that only a few students can hone, often because writing tasks are infrequently assigned in school.
- Automated Essay scoring makes it easier for teachers to assign more writing tasks and provide feedback.
- However, current tools lack in their scope because providing a simple overall score provides little to no feedback to the student and does not help the students in their progression

#### Objective:

- The goal of this project is to evaluate the essays on granular factors such as cohesion, grammar, syntax rather than just a single score
- We have used the ELLIPSE and PERSUADE corpus datasets available on Kaggle to train our automated essay scoring models

Evaluation: Mean Column Root Mean Square Error (MCRMSE)

$$MCRMSE = \frac{1}{N_t} \sum_{j=1}^{N_t} \sqrt{\frac{1}{n} \sum_{i=1}^{n} (p_{ij} - y_{ij})^2}$$

 $N_t$ : number of ground truth score columns  $p_{ij}$ : the predicted score  $y_{ij}$ : the ground truth score n: number of training samples



## **Data Description**

|                                                                                      |       | $essay\_length$ |
|--------------------------------------------------------------------------------------|-------|-----------------|
| ELLIPSE corpus available on Kaggle; contains essays written by students in           |       | 496.985170      |
| grades 8-12 annotated by human raters for language proficiency.                      | std   | 218.322784      |
| ELLIPSE Exploration:                                                                 | min   | 16.000000       |
| <ul> <li>3911 essay samples with scores for six analytical measures</li> </ul>       | 50%   | 464.000000      |
| Cohesion                                                                             | 90%   | 775.000000      |
| Syntax                                                                               | 91.1% | 795.000000      |
| Vocabulary                                                                           | 92.2% | 817.975000      |
| <ul> <li>Phraseology</li> <li>Grammar</li> </ul>                                     | 93.4% | 841.962500      |
| Conventions                                                                          | 94.5% | 884.000000      |
|                                                                                      | 95.6% | 936.875000      |
| <ul> <li>Scores range from 1.0 to 5.0 with an increment of 0.5</li> </ul>            | 96.8% | 1007.925000     |
| <ul> <li>Average length of essays was ~500 tokens with max length of 1453</li> </ul> | 97.9% | 1104.737500     |
|                                                                                      | 99%   | 1239.700000     |
|                                                                                      | max   | 1453.000000     |



## **Text Encodings**

- Inputs to Regression model
- Baseline: Bidirectional LSTM with Glove embeddings
- Pre-trained Language Models:
  - DistilBERT
  - Longformer
  - RoBERTa-base
  - T5-base



## Method I: LSTM with GloVe

- Performed data cleaning to remove white spaces, punctuations and any special html characters
- Used NLTK's tokenizer to tokenize the processed essays
- Used Glove embeddings to obtain vector representation of the tokens
- Trained a bidirectional LSTM network with hidden size = 400 and obtained the final hidden state
- Finally, a two-layer neural network converts this into a 6-dimensional output vector representing the scores for each of the six writing attributes described earlier





#### Method II: DistilBERT

- BERT which uses self-attention provides context dependent embeddings as opposed to Glove
- This improves model's ability to capture contextual information and provide a more accurate score
- Used Huggingface's AutoTokenizer class to tokenize the essays before passing them to the pre-trained distilBERT model
- A two-layer neural network described earlier was used to obtain the essay scores from distilBERT embeddings



### Method III: RoBERTA

- RoBERTa is a BERT like masked language model developed by Facebook outperforms BERT on most GLUE and SQuAD tasks
  - Differs from BERT with regard to the masking process uses dynamic masking.
  - Trained on a much larger corpus of data compared to BERT (10x) and a larger vocabulary set.
- Used Huggingface's AutoTokenizer class to tokenize the essays before passing them to the pretrained RoBERTa-base model
- A two-layer neural network to obtain the essay scores from RoBERTa embeddings





## Method IV: Longformer

- DistilBERT supports a max sequence length of only 512, but 40% of training essays have a length > 512
- Longformer model supports sequences upto length 4096
- Instead of self-attention, it uses a sliding-window and dilated sliding-window mechanism to capture the local as well as global context
- Like distilBERT, used Huggingface's AutoTokenizer class to tokenize the essays before passing them to the pre-trained Longformer-base model
- A two-layer neural network described earlier was used to obtain the essay scores from the longformer embeddings





#### Method V: T5-base

- T5 or Text-To-Text Transfer Transformer is an encoder-decoder model pre-trained on a multi-task mixture of unsupervised and supervised tasks
- This pre-training framework provides the model with general-purpose "knowledge" that might improve its performance on downstream tasks like sequence classification
- Used Huggingface's AutoTokenizer class to tokenize the essays before passing them to the pretrained T5-base model
- A two-layer neural network described earlier was used to obtain the essay scores from the T5 encoder output





## Results: Baseline + Pretrained Language Models

| Model                   | MCRMSE |
|-------------------------|--------|
| Baseline (LSTM + GloVe) | 1.36   |
| distilBERT              | 0.4934 |
| T5-base                 | 0.5320 |
| RoBERTa                 | 0.4746 |
| Longformer              | 0.4899 |

- The bidirectional LSTM with glove embeddings has the poorest performance
- Masked language models (DistilBERT, RoBERTa and Longformer) are seen to perform better than the generative model T5
  - Cause masked models are more tuned towards discriminative tasks with numeric outputs
- RoBERTa architecture produced the best results with a MCRMSE score of 0.4746
  - Plausibly due to its much larger training corpus and superior masking



## Improvements to Regression Modeling

- Output Quantization
  - constrain output between 1 and 5, with increments of 0.5
- Weighted RMSE (WRMSE)
  - Account for imbalance in score distribution.
- Multi Head Architecture
  - Use 6 single-task models instead of one multi-task model
- Autoencoder
  - Use bottleneck layer or denoised output from decoder. Also perform semi-supervised learning using other essays in ELLIPSE + PERSUADE corpus.



## **Results: Improvements to Regression Modeling**

| Experiment                           | MCRMSE |
|--------------------------------------|--------|
| distilBERT + output quantization     | 0.5294 |
| distilBERT + WRMSE                   | 0.5628 |
| distilBERT + Multi-Head Architecture | 0.508  |
| distilBERT + Autoencoder             | 0.575  |

- Unfortunately, none of these variations to training the regression model result in a significant improvement
- Further study with a larger dataset is essential to verify that this reduction in performance is not an artifact of the current dataset



# Results: Individual analytic measure MCRMSE

| Model (or) Experiment    | Cohesion | Syntax | Vocabulary | Phraseology | Grammar | Conventions |
|--------------------------|----------|--------|------------|-------------|---------|-------------|
| Baseline                 | 1.37     | 1.35   | 1.32       | 1.34        | 1.44    | 1.36        |
| distilBERT               | 0.54     | 0.51   | 0.46       | 0.52        | 0.57    | 0.49        |
| T5-Base                  | 0.55     | 0.52   | 0.48       | 0.54        | 0.58    | 0.53        |
| RoBERTa                  | 0.51     | 0.47   | 0.42       | 0.47        | 0.51    | 0.46        |
| Longformer               | 0.54     | 0.48   | 0.46       | 0.49        | 0.53    | 0.47        |
| distilBERT + output      | 0.55     | 0.53   | 0.48       | 0.53        | 0.57    | 0.51        |
|                          | 0.50     | 0.55   | 0.40       | 0.50        | 0.01    | 0.51        |
| distilBERT + Multi-Head  | 0.50     | 0.56   | 0.55       | 0.50        | 0.61    | 0.53        |
| Architecture             | 0.53     | 0.5    | 0.45       | 0.51        | 0.56    | 0.49        |
| Autoencoder + distilBERT | 0.59     | 0.56   | 0.52       | 0.56        | 0.61    | 0.55        |

- Cohesion and grammar seem to be the toughest to predict across all models
- Future works should focus on improving language models to better capture the grammatical aspects of the language