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Introduction

Motivation:

 Writing Is a foundational skill that only a few students can hone, often because writing tasks are infrequently
assigned in school.

« Automated Essay scoring makes it easier for teachers to assign more writing tasks and provide feedback.

« However, current tools lack in their scope because providing a simple overall score provides little to no
feedback to the student and does not help the students in their progression

Objective:

« The goal of this project is to evaluate the essays on granular factors such as cohesion, grammar, syntax
rather than just a single score

 We have used the ELLIPSE and PERSUADE corpus datasets available on Kaggle to train our automated
essay scoring models

Evaluation: Mean Column Root Mean Square Error (MCRMSE)
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Data Description

ELLIPSE corpus available on Kaggle; contains essays written by students in
grades 8-12 annotated by human raters for language proficiency.

ELLIPSE Exploration:
« 3911 essay samples with scores for six analytical measures

Cohesion
Syntax
Vocabulary
Phraseology
Grammar
Conventions

« Scores range from 1.0 to 5.0 with an increment of 0.5

* Average length of essays was ~500 tokens with max length of 1453
tokens

percentile
mean
std
min
50%
90%
91.1%
92.2%
93.4%
94.5%
95.6%
96.8%
97.9%
99%

max

essay_length

496.985170
218.322784
16.000000
464.000000
775.000000
795.000000
817.975000
841.962500
884.000000
936.875000
1007.925000
1104.737500
1239.700000
1453.000000
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Text Encodings

* Inputs to Regression model
« Baseline: Bidirectional LSTM with Glove embeddings

* Pre-trained Language Models:
* DistiiBERT
» Longformer
 RoBERTa-base
* T5-base
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Method I: LSTM with GloVe

« Performed data cleaning to remove white spaces, punctuations and any special html characters
« Used NLTK's tokenizer to tokenize the processed essays

« Used Glove embeddings to obtain vector representation of the tokens

« Trained a bidirectional LSTM network with hidden size = 400 and obtained the final hidden state
« Finally, a two-layer neural network converts this into a 6-dimensional output vector representing

the scores for each of the six writing attributes described earlier

Cohesion score
Syntax score
Vocabulary score
Phraseology score
Grammar score
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Method Il: DIstiIBERT

 BERT which uses self-attention provides context dependent embeddings as opposed to Glove

» This improves model’'s ability to capture contextual information and provide a more accurate score

« Used Huggingface's AutoTokenizer class to tokenize the essays before passing them to the pre-trained
distiBERT model

« Atwo-layer neural network described earlier was used to obtain the essay scores from distiiBERT

embeddings
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Method Illl: ROBERTA

« RoOBERTa is a BERT like masked language model developed by Facebook - outperforms BERT on most
GLUE and SQUAD tasks
« Differs from BERT with regard to the masking process - uses dynamic masking.
« Trained on a much larger corpus of data compared to BERT (10x) and a larger vocabulary set.
» Used Huggingface's AutoTokenizer class to tokenize the essays before passing them to the pre-

trained RoBERTa-base model

« Atwo-layer neural network to obtain the essay scores from RoOBERTa embeddings
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Method IV: Longformer

» DistiBERT supports a max sequence length of only 512, but 40% of training essays have a length > 512

« Longformer model supports sequences upto length 4096

» Instead of self-attention, it uses a sliding-window and dilated sliding-window mechanism to capture the
local as well as global context

» Like distiBERT, used Huggingface's AutoTokenizer class to tokenize the essays before passing them to
the pre-trained Longformer-base model

« Atwo-layer neural network described earlier was used to obtain the essay scores from the longformer

embeddings

]

(a) Full n? attention (b) Sliding window attention (c) Dilated sliding window (d) Global+sliding window
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Method V: T5-base

» T5 or Text-To-Text Transfer Transformer is an encoder-decoder model pre-trained on a multi-task mixture
of unsupervised and supervised tasks

» This pre-training framework provides the model with general-purpose “knowledge” that might improve its
performance on downstream tasks like sequence classification

» Used Huggingface's AutoTokenizer class to tokenize the essays before passing them to the pre-
trained T5-base model

« Atwo-layer neural network described earlier was used to obtain the essay scores from the T5 encoder

output

[ "translate English to German: That is good."

"Das ist gut.”

"cola sentence: The
course is jumping well.”

on the grass. sentence2: A rhino

"stsb sentencel: The rhino grazed
is grazing in a field."

"summarize: state authorities

[dispatched emergency crews tuesday to

"six people hospitalized after
a storm in attala county."

survey the damage after an onslaught
of severe weather in mississippi..”
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Results: Baseline + Pretrained Language Models

_______ Model | MCRMSE

Baseline (LSTM + GloVe)
distiBERT
T5-base
RoBERTa
Longformer

» The bidirectional LSTM with glove embeddings has the poorest performance

1.36
0.4934
0.5320
0.4746
0.4899

« Masked language models (DistiBERT, RoBERTa and Longformer) are seen to perform better than

the generative model T5

« Cause masked models are more tuned towards discriminative tasks with numeric outputs

 RoOBERTa architecture produced the best results with a MCRMSE score of 0.4746

» Plausibly due to its much larger training corpus and superior masking
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Improvements to Regression Modeling

« Output Quantization
« constrain output between 1 and 5, with increments of 0.5

- Weighted RMSE (WRMSE)

 Account for imbalance in score distribution.

« Multi Head Architecture
« Use 6 single-task models instead of one multi-task model

* Autoencoder

« Use bottleneck layer or denoised output from decoder. Also perform semi-supervised
learning using other essays in ELLIPSE + PERSUADE corpus.
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Results: Improvements to Regression Modeling

MCRMSE

distiiBERT + output quantization 0.5294
distiBERT + WRMSE 0.5628
distiiBERT + Multi-Head Architecture 0.508
distiiBERT + Autoencoder 0.575

« Unfortunately, none of these variations to training the regression model result in a

significant improvement

» Further study with a larger dataset is essential to verify that this reduction in

performance is not an artifact of the current dataset
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Results: Individual analytic measure MCRMSE

Model (or) Experiment Cohesion Syntax Grammar Conventions

Baseline 1.35 1.32 1.34 1.36
distiBERT 0.51 0.46 0.52 0.49
T5-Base 0.52 0.48 0.54 0.53
RoBERTa 0.47 0.42 0.47 0.46
Longformer 0.48 0.46 0.49 0.47
distiBERT + output
guantization 0.53 0.48 0.53 0.51
distiBERT + WRMSE 0.56 0.55 0.56 0.53
distiiBERT + Multi-Head
Architecture 0.5 0.45 0.51 0.49
Autoencoder + distiiBERT 0.56 0.52 0.56 0.55

« Cohesion and grammar seem to be the toughest to predict across all models
« Future works should focus on improving language models to better capture the grammatical

aspects of the language Gl." %gg;gia



